Chronic pain is a multi-dimensional experience, and pain intensity plays an important part, impacting the patients emotional balance, psychology, and behaviour. Standard self-reporting tools, such as the Visual Analogue Scale for pain, fail to capture this burden. Moreover, this type of tools is susceptible to a degree of subjectivity, dependent on the patients clear understanding of how to use it, social biases, and their ability to translate a complex experience to a scale. To overcome these and other self-reporting challenges, pain intensity estimation has been previously studied based on facial expressions, electroencephalograms, brain imaging, and autonomic features. However, to the best of our knowledge, it has never been attempted to base this estimation on the patient narratives of the personal experience of chronic pain, which is what we propose in this work. Indeed, in the clinical assessment and management of chronic pain, verbal communication is essential to convey information to physicians that would otherwise not be easily accessible through standard reporting tools, since language, sociocultural, and psychosocial variables are intertwined. We show that language features from patient narratives indeed convey information relevant for pain intensity estimation, and that our computational models can take advantage of that. Specifically, our results show that patients with mild pain focus more on the use of verbs, whilst moderate and severe pain patients focus on adverbs, and nouns and adjectives, respectively, and that these differences allow for the distinction between these three pain classes.
translated by 谷歌翻译
The cooperation of a human pilot with an autonomous agent during flight control realizes parallel autonomy. A parallel-autonomous system acts as a guardian that significantly enhances the robustness and safety of flight operations in challenging circumstances. Here, we propose an air-guardian concept that facilitates cooperation between an artificial pilot agent and a parallel end-to-end neural control system. Our vision-based air-guardian system combines a causal continuous-depth neural network model with a cooperation layer to enable parallel autonomy between a pilot agent and a control system based on perceived differences in their attention profile. The attention profiles are obtained by computing the networks' saliency maps (feature importance) through the VisualBackProp algorithm. The guardian agent is trained via reinforcement learning in a fixed-wing aircraft simulated environment. When the attention profile of the pilot and guardian agents align, the pilot makes control decisions. If the attention map of the pilot and the guardian do not align, the air-guardian makes interventions and takes over the control of the aircraft. We show that our attention-based air-guardian system can balance the trade-off between its level of involvement in the flight and the pilot's expertise and attention. We demonstrate the effectivness of our methods in simulated flight scenarios with a fixed-wing aircraft and on a real drone platform.
translated by 谷歌翻译
As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user's preferred answer ("sycophancy") and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Sunquakes are seismic emissions visible on the solar surface, associated with some solar flares. Although discovered in 1998, they have only recently become a more commonly detected phenomenon. Despite the availability of several manual detection guidelines, to our knowledge, the astrophysical data produced for sunquakes is new to the field of Machine Learning. Detecting sunquakes is a daunting task for human operators and this work aims to ease and, if possible, to improve their detection. Thus, we introduce a dataset constructed from acoustic egression-power maps of solar active regions obtained for Solar Cycles 23 and 24 using the holography method. We then present a pedagogical approach to the application of machine learning representation methods for sunquake detection using AutoEncoders, Contrastive Learning, Object Detection and recurrent techniques, which we enhance by introducing several custom domain-specific data augmentation transformations. We address the main challenges of the automated sunquake detection task, namely the very high noise patterns in and outside the active region shadow and the extreme class imbalance given by the limited number of frames that present sunquake signatures. With our trained models, we find temporal and spatial locations of peculiar acoustic emission and qualitatively associate them to eruptive and high energy emission. While noting that these models are still in a prototype stage and there is much room for improvement in metrics and bias levels, we hypothesize that their agreement on example use cases has the potential to enable detection of weak solar acoustic manifestations.
translated by 谷歌翻译
Self-supervised image denoising techniques emerged as convenient methods that allow training denoising models without requiring ground-truth noise-free data. Existing methods usually optimize loss metrics that are calculated from multiple noisy realizations of similar images, e.g., from neighboring tomographic slices. However, those approaches fail to utilize the multiple contrasts that are routinely acquired in medical imaging modalities like MRI or dual-energy CT. In this work, we propose the new self-supervised training scheme Noise2Contrast that combines information from multiple measured image contrasts to train a denoising model. We stack denoising with domain-transfer operators to utilize the independent noise realizations of different image contrasts to derive a self-supervised loss. The trained denoising operator achieves convincing quantitative and qualitative results, outperforming state-of-the-art self-supervised methods by 4.7-11.0%/4.8-7.3% (PSNR/SSIM) on brain MRI data and by 43.6-50.5%/57.1-77.1% (PSNR/SSIM) on dual-energy CT X-ray microscopy data with respect to the noisy baseline. Our experiments on different real measured data sets indicate that Noise2Contrast training generalizes to other multi-contrast imaging modalities.
translated by 谷歌翻译
Text classification is a natural language processing (NLP) task relevant to many commercial applications, like e-commerce and customer service. Naturally, classifying such excerpts accurately often represents a challenge, due to intrinsic language aspects, like irony and nuance. To accomplish this task, one must provide a robust numerical representation for documents, a process known as embedding. Embedding represents a key NLP field nowadays, having faced a significant advance in the last decade, especially after the introduction of the word-to-vector concept and the popularization of Deep Learning models for solving NLP tasks, including Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Transformer-based Language Models (TLMs). Despite the impressive achievements in this field, the literature coverage regarding generating embeddings for Brazilian Portuguese texts is scarce, especially when considering commercial user reviews. Therefore, this work aims to provide a comprehensive experimental study of embedding approaches targeting a binary sentiment classification of user reviews in Brazilian Portuguese. This study includes from classical (Bag-of-Words) to state-of-the-art (Transformer-based) NLP models. The methods are evaluated with five open-source databases with pre-defined data partitions made available in an open digital repository to encourage reproducibility. The Fine-tuned TLMs achieved the best results for all cases, being followed by the Feature-based TLM, LSTM, and CNN, with alternate ranks, depending on the database under analysis.
translated by 谷歌翻译
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs). Quantization is a technique for making neural networks more efficient by running them using low-bit integer arithmetic and is therefore commonly adopted in industry. Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization, and certification of the quantized representation is necessary to guarantee robustness. In this work, we present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs. Inspired by advances in robust learning of non-quantized networks, our training algorithm computes the gradient of an abstract representation of the actual network. Unlike existing approaches, our method can handle the discrete semantics of QNNs. Based on QA-IBP, we also develop a complete verification procedure for verifying the adversarial robustness of QNNs, which is guaranteed to terminate and produce a correct answer. Compared to existing approaches, the key advantage of our verification procedure is that it runs entirely on GPU or other accelerator devices. We demonstrate experimentally that our approach significantly outperforms existing methods and establish the new state-of-the-art for training and certifying the robustness of QNNs.
translated by 谷歌翻译
Despite being responsible for state-of-the-art results in several computer vision and natural language processing tasks, neural networks have faced harsh criticism due to some of their current shortcomings. One of them is that neural networks are correlation machines prone to model biases within the data instead of focusing on actual useful causal relationships. This problem is particularly serious in application domains affected by aspects such as race, gender, and age. To prevent models from incurring on unfair decision-making, the AI community has concentrated efforts in correcting algorithmic biases, giving rise to the research area now widely known as fairness in AI. In this survey paper, we provide an in-depth overview of the main debiasing methods for fairness-aware neural networks in the context of vision and language research. We propose a novel taxonomy to better organize the literature on debiasing methods for fairness, and we discuss the current challenges, trends, and important future work directions for the interested researcher and practitioner.
translated by 谷歌翻译
One of the main problems in applying deep learning techniques to recognize activities of daily living (ADLs) based on inertial sensors is the lack of appropriately large labelled datasets to train deep learning-based models. A large amount of data would be available due to the wide spread of mobile devices equipped with inertial sensors that can collect data to recognize human activities. Unfortunately, this data is not labelled. The paper proposes DISC (Deep Inertial Sensory Clustering), a DL-based clustering architecture that automatically labels multi-dimensional inertial signals. In particular, the architecture combines a recurrent AutoEncoder and a clustering criterion to predict unlabelled human activities-related signals. The proposed architecture is evaluated on three publicly available HAR datasets and compared with four well-known end-to-end deep clustering approaches. The experiments demonstrate the effectiveness of DISC on both clustering accuracy and normalized mutual information metrics.
translated by 谷歌翻译